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TABLE |
DEVIATION IN €.57(0) OF SHIELDED MICROSTRIP LINE AGAINST THE STATIC RESULTS OF SDA
o | ¥ f2=20  mag

Var. | March | Mod.Mar. { Behl | Var. ! March { Mod.Mar. | Behl

0.1 | 0.20 | -0.32 0.35 0.45 {-0.70 | -0.18 -0.31 -0.34

0.6 | 0.00 | -0.42 0.20 0.54 |-0.64 | -0.47 -0.52 | -0.52

L0 |-0.24 | -0.89 -0.29 0.41 | -0.06 | 0.00 0.10 0.28

2.2 § 5.0 | -0.06 | -2.56 -0.19 -0.23 | -0.07 | -0.53 -0.09 -0.11
100 [ 0.39 | -4.16 -0.09  -1.41] 1.07 | -1.43 -0.65 | -0.92

0.1 | 0.10 | 0.19 0.50 0.70 | 0i2 0.20 0.13 -0.18

0.6 | 0.19 | 0.17 0.01 0.82 | 022 7 0.25 0.35 -0.45

L0 | 0.07 | 0.94 0.14 0.78 1 0.17 | -0.03 0.13 -0.66

9.8 | 5.0 [ -0.05 ] 4.40 -0.72 [ -0.50 | -0.08 | -0.69 0.13 -0.68
10.0 | 1.04 | -747 0.29 2259 1 -1.09 1 -0.35 -0.83 -2.0

0.1 {0.10 | -0.30 0.06 051 | 0.2 | 021 ¢.19 -0.36

0.6 | 0.08 | -0.47 0.03 0.79 | 0.06 | 0.49 0.1¢ -0.26

10 [ 0.00 | -1.04 0.13 0.68 | 0.15 | 0.09 0.32 -0.82

20.0 | 5.0 }-0.69 | -4.74 0.18 -0.61 | -0.11 | -0.74 0.15 -0.89
10.0 | 1.01 | -8.18 0.23 -2.99 | 107 | -2.19 -0.74 -2.16

0.1 | 0.10 | -0.45 -0.23 0.61 ) 0.19 | -0.25 0.12 0.20

0.6 § 020 | -0.65 0.13 0.58 | 0.28 | -0.14 0.09 -1.18

1.0 | 015 { -0.99 6.22 0.72 } 0.27 | -0.09 0.14 ST

400 { 5.0 | 0.02 | -4.88 0.23 -0.65 | 0.06 | -0.72 0.19 -0.98
16.0 | 0.49 | -8.46 -0.22 -3.11 | 0.81 2.39 -0.88 -2.41

where K = 1 — a(hy/w)/(hs/hi)®)

lha 2Rl a =0.0663+0.0576 2,  0.1< L <06
| M hy hy
h2 &2 L =-0.2504 + 0.5684—,  06< — <3
1 hl hl
il & | =10, 3<-S <10 2)
1
Fig. 1. Shielded composite substrate microstrip line. y = —0.49 + 1.485log,, <;i) 3)
11
q(shielded) = 0.5 + ¢'(g(unshielded) — 0.5). 4)

Il. STATIC EFFECTIVE RELATIVE PERMITTIVITY

The three-layer shielded microstrip line, shown in Fig. 1, can be The g(unshielded) could be determined from the expressions of
reduced to the shieldeth. — 0,¢,0 = 1), suspendedh; — Hammerstad—Jansen [8]. Finally.:(0) of the shielded microstrip
oo, €,3 = €1 = 1) and compositdhs — oo, ¢,3 = 1) substrate can be determined from
microstrip lines. Table | compares the percent deviatior.in(0) _ .
for the sgielded microstrip line calculated by the variational method it (0) = 1+ g(shielded)(ery — 1). ®)
(Var.) [4], expressions of March [5], and expressions of Behl [6] Table | clearly shows that the modified model of March has
against the spectral-domain analysis (SDA) [7]fat 0.1 GHz on deviation<0.9%. In most of the cases, error<9.2%. As a matter
er1 = 2.2,9.8, 20, and40, for (h;/hy) = 2 and6 at (w/h,) = 0.1,  of fact, the modified model of March has accurac.9% even for
1, 5, and10. Results have also been computed (bs/h1) = 3, 4, ¢, < 140.

8, 10, and other ratios ofw/h,) for comparison. The variational In the range0.l < (w/h) < 10,0.2 < (h1/h)<0.8, 2.0 <
method has deviatiog1%. The deviation in the models of Marche,, < 20,h = hy + ho for the suspended microstrip line, we have
and Behl increases with nearness of the top shield and with increasenpared the results fets (0) determined by the variational-method

in the relative permittivitye.1 and(w /1) ratio. The model of March and models of Tomar and Bhartia [9], Svacina [10], and Schellenberg
has deviation as high as 8.46% and the model of Behl has deviatjan] against the results of SDA Mirshekhar—Davies (SDA MD) [7] at
<3.1%. frequencyf = 0.1 GHz. The results of Tomar—Bhartia and Svacina

To improve the accuracy of the model of March, we have modjive deviation from 4% to 36%. The model of Schellenberg has a
ified the expression for filling factog (shielded) by introducing a deviation<2.12% fore,» < 13, increasing up to 18% fot,» = 20
correction factor, which is a function ofv/k, andhs/hi. Alarge at (w/h) = 5,(hi/h) = 0.2. However, this is the best closed-
number of cases were used to obtained numerical valuk @ind form model which could be acceptable for computer-aided design
then a curve-fit expression was obtained. The expressiogi falong (CAD) purposes. The.s(0) of the composite substrate microstrip
with correction factork™ is given by line could be determined by either the variational method or by the

closed-form model of Svacina [10]. However, the deviation in the
¢ = tanh <0_922 +0.121 <1 + hj) - 1.164]74)1( (1) model of Svacina is 7.39%-18.7%, whereas the variational method
1 hs has a deviation<1% for the suspended/composite substrate.
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Variational [4] Closed-Form
Technique - Original Model | Dispersion {1} | Eetyff)
in B Q4 Krirechning-
Fouriecr Domain Single Jansen Maodel)
Equivalent
Transverse Single Layer E 0
Transmission Line| | Layer Eeali-0]
tor  [16] — cq
Green's Function o //\
Reduction Difterence e s:'::::u
Conformal 2 1 Calculation
Mapping Resuhs |
{i=1,2] New Improved Model
Fig. 2. Schematic diagram of unified dispersion model.
lll. NEw UNIFIED DISPERSION MODEL 20— e
The modeling scheme of the previous unified dispersion model [2] : —+— Gomposite h2/h1 0.3
and the present model is shown in Fig. 2. In the previous model, 18 w/h =1 —i— Gomposite h2/h1 <3.0
the multilayer microstrip line has been replaced by an equivalent %~ Shielded h3/h1 =2.0
single-layer substrate with a static equivalent relative permittivity 2 16/ 3} Shielded h3/h1 6.0
€cq. This process is the SLR formulation. On the equivalent substrate ,.E_ qal X~ Suspended hz/h1 =19
with e.y, the Kirsching—Jansen (KJ) [12] dispersion model is used. * ~>~ Suspended h2/h1 1.0
Through extensive study of shielded-, suspended-, and composite- E PN ‘ ~2 Suspended h2/h1:0.33
substrate microstrip lines, we have noticed that the effective relative 6‘_’ %l
permittivities of these structures do not move toward either the real ° 109 — R S Sl (R TR
permittivity or e with increase in frequency. Insteady ( f) appears 2 '
to move toward a “virtual relative permittivity,” which depends both ‘_(_B' 8 S TR
upon the structure and operating frequency. The phrase “move toward g
ero(f)" indicates as if the virtual relative permittivity is a frequency- __ € : e
independent relative permittivity of the substrate having a fixed value. g 4
L X ; hg 2 a4l FEIDNIBES S S o
However, this is not true. The virtual relative permittivity could be & b —— O
viewed like the material dispersion in the substrate. For the shielded = DN N VD NS S S Sty
microstrip line at the lower end of the frequency, this virtual relative
permittivity €,,(f) is higher than the,,. It is also higher thar., o ; : . | . TR
of the composite/suspended microstrip line. The key issue in the new 10 20 30 40 50 60 70 .80 90 100
unified dispersion model is the empirical determinatiors,of ). Frequency {GHz)

Fig. 3 shows the frequency-dependent nature of the virtual rela- ' _ o
tive permittivity of the shielded-substrate,; = 9.8), suspended- Fig- 3. Virtual relative permittivity.
substrate(e,1 = 1,e,0 = 9.8), and composite substraig,: =
3.5, €00 :_12.95,11 = 0.2 mm) microstrip _Ilnes. On investigating 4q the composite/suspended substiate hy + ho. f - is in
the behavior of,..(f) anddecrr(f)/df of various structures through gy, . o | view of the above discussion,. ( f) could be written as

use of the SDA, we have noticed that the virtual relative permittivity o,y nination of static and frequency-dependent parts of the relative
of the shielded microstrip line increases with the real relative peﬁ'ermittivities

mittivity of the substrate and the/h, ratio, and decreases with an

increase in the top-shield height. It also decreases with an increase in €ro(f) = €eq + €rada(f) (7
the frequency after a certain low frequency, which could be estimated ] ] o
from the frequency parametef, of Getsinger [13]. Likewise, the Where, for the shielded microstrip ling,q = ¢ and for the

virtual relative permittivity of the suspended-/composite-substrafé'SPended/composite-substrate microstrip digecould be obtained

microstrip lines increases with increase in relative permittivity of th0m the SLR formulation [2]. The presence of top-shield or ad-
substrateyw /1 ratio and operating frequency. The increase,ir f) dition_al_ (_jielectric layer alws_tys alte_zrs the st_atic equivalent relz_ative
is significant for the suspended microstrip line/of/h, = 1. The Permittivity e.,. However, with an increase in frequency, the field
e-.(f) decreases with an increase in the air—gap/thickness of the [J{€S move toward the substrate of higher permittivities, bridging

permittivity substrate. Fig. 2 shows that the new unified dispersidfie 9ap between equivalent relative permittivity and real relative
model could be written as permittivity of higher value. Therefore, the.aq(f) could be mod-

(ero(f) = eutt (0)) eled around the difference relative permittivithe,. Thus, for
et (f) = €ru(f) — % (6) the shielded microstrip line\e, = ¢,1 — e.q, for the composite
+P(f) (€72 > €.1)Isuspended microstrip liné\e, = €0 — e, for the
whereP(f) is a parameter obtained from the expressions of Krischnemposite(e,1 > e-2) microstrip line Ae, = €1 — €cq.
ing and Jansen [12]. In the present caBgf) is dependent upon  Satisfying the functional requirements discussed above, an ex-
w/h,f - h ande,..(f). For the shielded microstrip liné = h; pression for the additional relative permittivity could be written as
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follows: S —15exp — [ —% — ,
y a=1.5exp (0.7213}1), h=h; + hs (14)
y (1 + O:Z) 3 a2 P Aq ) P Apqw/h _ h2
uada(F) = V7Be (1) ®  7=3.0280.8118) " 0.848(L0248) ) 4= 22 (15)
The parameters,, 3, and~ control the influence ofv/h ratio, - —(.345.4, 4, (4,)" (grf))l‘g‘r’_/ 01 < g <10.  (16)
. l

operating frequency, and relative permittivity, respectively, on the
€radd (f) - H is a parameter-controlling thickness of dielectric layers. £or 6 < (w/h) < 4, Ay = exp(1.3911(0.4236)/" +
For each specific structure, these parameters have been obtaineg@%l(,u,/h)_q.888 _ 1;

trial and error after comparing dispersion results of the present modef 4 <(w/h) < 10, 4, = 0'116(1.3474)10//1

against a large number of results obtained by the SDA MD over a -

wide range of physical parameters of the structures. The empirical
relations for these parameters have been obtained by the curve
fitting with the help of linear, power, exponential, and logarithmic

regressionsy, is the normalized frequency, which & = (f,/7f)
for the shielded microstrip and.. = (f/7f,) for the suspended-
/composite-substrate microstrip. The frequency paramgtdor the
individual structure is given by [13]

o ZO
fr=

9
2uohr/(eerr (0)) ©

whereZ, is the characteristic impedance of the microstrip line on the

air—substrate, i.eg1 = €2 = ¢,3 = 1. For the shielded microstrip

he (h .
A = % <I;_2 > 1), As = 1 otherwise 17)
1 '1
u w
A= o06<¥<s
4 h ~— h — ?
Ay = :—z 5< % <10 (18)
A5 = 3.4266 — 4.2256%, 0.1< % <0.6
—1.0133-0.2123%,  01< %<5
h h
=—0.2339 + ().()555% 5< 2 <10. (19)
1 (]

line, Z, could be obtained from the closed-form expressions of March T0 improve the accuracy of the model for the suspended microstrip

[5], and for the open suspended/composite substidtecould be

line, (8) for er.aa(f) is multiplied by a correction factoi as

obtained from the closed-form expressions of Hammerstad—Janf@ipws:

[8].

IV. APPLICATION OF THE NEW UNIFIED DISPERSION
MODEL TO INDIVIDUAL STRUCTURES

A. Shielded Microstrip Line

The virtual relative permittivitye...(f) for this case is obtained
by taking H = (hs/h1), 7 = 3, fo = (f/3f),and f, = 1(f <
(fp/3)) in (8). The additional permittivity:;aqa(f) for the shielded
microstrip line meets the asymptotic requirements.aa(f) —
0,60(f) — €1 as (hz/h1) — oo and eaaa(f) — 0,
erv(f) — €1 @Sf — oo. The expressions for, /3, and~ for the
shielded microstrip line are summarized as follows:

_ w \ 0T w
a=14738( L . 01< 2 <10 (10)
hy h1
3 =1.5731 — 0.2308 <l> 01< ¥ <06
hi h1
w —0.2535 w
=1.2604( = . 06< Y <
hy h
=05, 5< % <10 (11)
11
v =—0.9869 + 1.1304¢,1,  1.05 < 61 < 2.2
=0.8228 4 0.32866,1,  2.2< e < 12.95
= —13.5 4+ 1.4285¢r1,  12.95 < ey < 14
=0.3342 4+ 0.3542¢,1,  14< e < 20 (12)

The model has been tested in the rar@ge/h:) > 2, 0.1 <
(w/h1) < 10, 1.05 < €4 < 20. This model has a maximum
deviation <1.6% against the SDA MD [7].

B. Suspended Microstrip Line
The €..,(f) for this case is obtained by taking = 0.25 and

fo = @f/fp), fn = L(f < fp/4) in (8). The empirically
determined parametefg, «, 3, and~y are summarized as follows:

}l 0.0544
H = cxp <—5.1128 <—°> )
hl

(13)

. 2
K'=1- Agexp <—<fl 2‘()6(]) ) (20)
where f; is in gigahertz. For0.1 < (w/h) < 5, A
A',',((hz/h]) S 1) and A(, = (447/441);(1<(h2/h1) S 3) For
b<(w/h) <10, A4g = A7:(0.05 < (hy/h) < 3)

As :—1.6938—1—0.3508%, 01< 5 <5
13 ]
=—0254+0052, 5<¥<s
h h
w w
=—0.825 401255,  8< 7 <10 21)

The model has been tested fiox €,» < 13,0 < (hy/he) < 3, and
0.1 < (w/h) <10, f-h <2 GHz- cm. It has a maximum deviation
of 2% against the SDA MD atw/h) = 10,(hy/h1) = 1. It has
a root-mean-square (rms) deviatiaf0.8%. The model meets the
asymptotic requiremenis.qa(f) — 0, €,0(f) — 1 ashs — 0
and eraaa(f) — 0, €ro(f) — €2 @shy — 0.

C. Composite Substrate

It has been modeled for two different cases, namegly> ¢-; and
€1 > €02, The case:» > €1 could also be used for the suspended
structure with limited range of parameters, i.e.,for< (h»/19) and
hy > 3he and2 < €2 < 6. FOre o > €1, theees (f) is obtained by
taking7 = 1, fu = (f/f,) (f > f), fo =1 (f < f,) anda = 0.6
in (8). The curve-fitted expression fdf, 3, and~ are as follows:

h 0.1115
H = exp <—4.4292 <}i) ) (22)
11
g=cn () h=h+1 23
b= 1(3) R v = h1 + ho (23)
h2 1 h2
C1 =2.6888 + 0.3566( — |, - < =<1
hy 3 hi
hz }lg
=3.4093 — 0.3639( — |, 1< —=<3
h1 hl
- ha o D2
=2.8050—0.1261( 22 ), 3<2<19  (24)
hi hi
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I 1 _ h
Ch =0.3573 — 005743@’), §§£§1 °
h ! ; ! —— SDA(MD) [7]
=0.3375 — 0.0377(—2), 1<2<3 —+ P W/h1=2, h1-0.05 om
hi h1 ¥ vH 2] h3/h1 -8
. . Er1 - 9.0
=0.266 — 0.014 <hi> 3< ™ < (25) & el
Iy 1 > 8DA(M) [14]
v =0.3285(1.2012)2,  2< e <98 8l o kP Ml

=0.0655(1.4173)72, 9.8 < ey <13, (26)

This model has been tested against the SDA MD2fef €0 < 13,
(er2/€1) < 5,01 < (w/h) < 10, 0 < (hi/h2) < 3, and
f-h <4 GHz- cm. This model has maximum deviation of 2% at
(w/h) = 10, (ha/h1 = 1, e, = 3.5, ande,2 = 12.95). The rms
deviation in the model is<1.8%.

For er1 > €2, theeo(f) is obtained by taking? = 2.0(hz/h1),

r = (1/2), fa = 2f/fp), f2 = 1 (f < (£,/2)), anda = 1 for
0.1 < (w/h) <10, 0.01 < (hz/h1) < 0.05 in (8). This case is
applicable for a thin passivation layer. The expression~fdas the

same as (26). The curve-fitted expression/fas as follows:
6
—0.4288

3_08028(w> L h=hy+ b 27) 2 20
Frequency(GHz)

Effective dielectric constant, ¢.¢(f)

In this case, the model has a maximum deviation of 2% against

the SDA MD for f - 7 < 4 GHz - cm. Fig. 4. Comparison of present dispersion modEIM{) for the shielded

microstrip line against various methods.

D. Shielded Composite-Substrate Microstrip Line 10

Fore.1 > €2, thee.s (f) Of this is obtained by taking the following W/het
: . —— Balanis [16] "
parameters in (8): ' __ | —+ soamD) Eri-22, Er2-9.7
H=2, h=hi+h. (28) Z | ew h1 - 0.063 om
h by h2 « 0.087 cm
For f-h < 0.8 GHz- cm, f, = f,/(2.5(f — exp(0.035f))). v b« htoh
T * hish2 » 0.02
For0.8 < f-h <2 GHz- cm, fn = f,/(2.0(f — exp(0.0351))). £ ol 02 om
For2 < f-h < 6 GHz - cm, f, = (f,/133.78), where f and g
f» are in gigahertzg = v = 0.5, and the empirical expression for g
a is as follows: o
; —-C w .2
a :cg(ﬂ) Y06 < % <10 (29) 5
} h'_) _ ;‘0
Cs =2.7392 — 14.587 — — <0.05 2
h1 1 g °or
- ho o
=1.9715, 0.05 < -= < 0.33 2
ha e
=2.1086 — 0.6821 [ 12 033< 2 <1 (30) &
h1 ’ ~ hy — =
Oy =0.4758 — 0.9732( 12 ke < 0.05 ‘ L |
}11 hl 4 T + 4 + L + + i
0.0 10 20 30 40 50
=0.4246, 0.05 < K <0.33 Frequency(GHz)

=0.4378 — 0.03959 <;_> 0.33 < ;l < 1. (31) Fig.5. Comparison of dispersion results of present maftéli() against the
1 :

SDA from two sources.

The e, (f) meets the asymptotic requirement with respect to the
top shield height, i.e.¢,.(f) — eeq for (h3/h) — oc. For

(hs/h)> 8, the model could also be used for the determination

Again, f and f, are in gigahertz. The empirical expressions for
gfarametersu 3, and~ for this case are as follows:

the dlsper5|on behavior of the open composite-substrate microstrip, — (. ( ) (6, 0.1 < Z < 10 1< ha <19 (33)
line. For e.s > e,1, the e (f) is obtained by taking the following h e h D .
parameters in (8): Cs = 0.643 <:2> Co = 0.2977(23) (34)
al "1
H = ];3 , h=hi+ho (32) 1 ho —1.6936
! 8=0.5,y= N Cr =1. 4134( ) )
for f-h < 0.8 GHz- cm, f, = (£,/2.2(f — exp(0.035f))); <1 e ) hy
for 0.8 < f-h < 1.2 GHz- cm, fu = (£,/2(f — exp(0.035))); I

for 1.2 < f-h <28 GHz-cm, f, = (f,/125). (35)
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—— V-H {2} -
—+ PM W/h - 0.788
-¥- 8DA It Er+12.96, Er2-3.5
117" -5~ spamp) (7] h2/h1 - 0.015
¢ EXP. (8] h1 - 0.02 cm
-O— PM h2 = 0.0003 ¢m
- vH (2]
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VI.

We have presented a unified dispersion model to achieve an
accuracy better thar2% for the dispersion in various microstrip-
like structures. Our modeling is satisfactory for the first three
cases. However, an improvement is needed for the shielded
composite-substrate microstrip line where the deviatiorn 386 for
f-h <26 GHz- cm. The concept of virtual relative permittivity
could be further extended for the dispersion modeling of the
multilayer shielded/unshielded coupled microstrip line.

CONCLUSION
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Fig. 6. Dispersion of composite microstrip line.

(3]

For the case,: > .2, the model has a maximum deviation of 2% [4]
for e,1 = 12.95, ¢,0 = 3.5f - h <4 GHz- cm, 0.1 < (w/h) < 10,
(ha/h) > 2. FOrero > €71, 0 < (ho/h1) < 3, (ha/h1) > 2, the [5]
model has a maximum deviation of 3% fér h < 2.6 GHz - cm.

[6]

(7]
The results of the present model have been thoroughly compared
against the SDA MD [7]. The seventh-order Legendre polynomial

V. COMPARISON TO PUBLISHED RESULTS

Sharma for careful reading of the manuscript.
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